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Abstract

This paper describes a criterion, based on Bayes’s theorem, that defines the optimal set
of classes (a classification) for a given set of examples. This criterion does not require
that the number of classes be specified in advance; this is determined by the data. Tu-
tored learning and probabilistic prediction in particular cases are an important indirect

result of optimal class discovery. Extensions to the basic class induction program include
the ability to combine category and real valued data, hierarchical classes, independent
classifications and deciding for each class which attributes are relevant.

1 Introduction

This paper describes a method for automatically discovering (inducing) classes from a
given database. These classes can then be used to give insight into the patterns that
occur in the particular domain, or make predictions in particular cases. This type of
learning is often called unsupervised or untutored learning, since there are no precon-
ceived classes and the number of classes to be found is not known. In supervised learning,
on the other hand, the user expects the system to induce a specific classification based
on a set of pre-claasified examples. In either kind of learning, the resulting classification
can be used to classify new cases. Many previous authors have published approaches in
the area of automatic class discovery [9]. A large number of these approaches employ
clustering methods which use a “gimilarity” measure that defines a “distance” between
any pair of cases based on how “close” their descriptions are. Unfortunately, automatic
clustering methods give different results depending on the similarity measure chosen.
Even more disturbing is that automatic clustering methods require the user to specify
the number of classes to be discovered, or rely on ad hoc methods for choosing an ap-
propriate number of classes. As a result of the lack of a good criterion for choosing the
number of classes, these methods often produce classes even if given randomly generated
data. Consequently, the user never knows if the classes produced by clustering methods
indicate actual classes in the domain or are just the result of random variation and the
similarity measure used. Despite these criticiams, if there are strong natural classes in
the data, clustering methods with any reasonable similarity measure will find them. It
is when the natural classes are buried in excessive noise that clustering methods break
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down.
The difficulties of clustering methods are well known, and have been strongly criti-

ciged in the Al learning literature—see [6],[9] for a clear critique. Michalski proposes an
alternative method for automatic class discovery called “conceptual clustering”. Briefly,
this method uses a clustering procedure to produce potential classes, then uses a mini-
mum description criterion (in a given language) to choose the final classes. The resulting
classes clearly depend on the methods for generating candidate classes and the language
used to describe them. Michalski regards this dependence as inevitable because he does
not believe in “natural” classes. Instead, he believes that classes depend on the purpose
of the classification, which in conceptual clustering is embedded in the class description
language. Michalski’s approach raises the fundamental question: in automatic classifi-
cation, are classes snvented or discovered? This is an old philosophical problem.

The approach described in this paper finds the most probable classification given the
data. Since this is a Bayesian approach, prior probabilities for the number of possible
classes need to be given, as well as prior probability distributions for all the parameters
in the classification model. Intuitively, the most probable classification is the one in
which the class descriptions (i.e. the probabilities of the attribute values) best predict
the observed values. The most probable classification also decides the optimal number
of classes as well as the class descriptions. Because it takes considerable data to move a
class description away from its prior value, the Bayesian criterion is automatically biased
against introducing more classes than the available data will support. The criterion for
deciding which is the most probable classification is a direct consequence of Bayes’s
theorem (section 3), and does not require any ad hoc assumptions—in particular, it
does not require any similarity measure, because it does not directly compare particular
cases. The Bayesian criterion for optimal classsification essentially depends on how
well the proposed classes predict the given data; the accuracy of the prediction could
be regarded as a kind of similarity measure.! Although the classes found depend on
the language used to describe the data, they do not depend on the “language” used to
describe the classes, as in conceptual clustering.

The pew automatic Bayesian class induction procedure allows both category-valued
information (e.g. Sex) and real-valued information (e.g. Blood-pressure) in the data
description. The particular method described in section 3.1 makes a number of assump-
tions. Section 4.2 discusses extended models that relax some of these assumptions. In
particular, the assumption that all variables are important in describing all classes can
be removed, as well as the assumption of mutual exclusivity of the classes. The Bayesian
approach defines the criterion for optimal classification, but it does not say how to find
the optimum—this is a difficult search problem. The use of the discovered classification
for prediction purposes is discussed in section 5. This method of making predictions
via a mapping onto classes is a common pattern of human reasoning, and corresponds
closely to other supervised learning methods, such as ID3 [9]. The use of the class
induction procedure for discovery of classes and their subsequent use for prediction can
be viewed as automatic discovery of expert systems—without the expert.

1The Bayesian criterion is defined between the class descriptions and the cases, not between pairs of
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2 Data Format Definition

A typical data base of the form required is shown in Fig. 1. It assumes that all the data
is in the form of an ordered (i.e. fixed) list of attributes that describe each case (example,
item etc.). Attributes can either have category values, (e.g. Blood-Group), that have a
predetermined set of possible values, or they can be real-valued, (e.g. Blood-Pressure).
Catagory values are assumed to be mutually exclusive and exhaustive. Real-valued
attributes are sometimes referred to here as variables. In the AI literature, reference
is often made to “tree-valued” attributes. For example, the attribute SHAPE can be
eplit into values [TRIANGLE, QUADRILATERAL, --- etc.] at the first level, and the
value TRIANGLE can be further subdivided into [REGULAR, ISOCELES, RIGHT-
ANGLED, IRREGULAR] and the value IRREGULAR can be divided into [OBLIQUE,
NON-OBLIQUE] and so on. However, the leaf nodes of the tree form a set of mutually
exclusive and exhaustive values, so that the tree structure can always be flattened into a
set of mutually exclusive and exhaustive values (as required by the above format). Tree
structures may implicitly contained important prior probabilities information for the
possible leaf values, leading to non-uniform prior probabilities. Such prior information
should be extracted when the tree is flattened.

The data base format has a number of built-in assumptions that limit its generality.
For example, it assumes that the number of possible outcomes for a given predicate
is known (but the poesibility of other values can be allowed for by adding an “other”
catagory—see below). Although a possible attribute value is whether a patient is mar-
ried or not, the format does conveniently represent the information that two particular
patients are married to each other. Such relational information can be included by suit-
ably extending the predicate. For the marriage example, a predicate “In-marriage” can
be introduced, with specific values giving which marriage (if any) a particular individual
is in. Married couples (or larger groupings) will all have the same marriage identifier.
Another limitation is that the theory presented currently does not make use of ordering
information. One form of ordering information that is ignored is orderings on catagory
values of discrete attributes. For example, an attribute such as EDUCATION-LEVEL
can have values such as [HIGH-SCHOOL—DROPOUT, HIGH-SCHOOL-GRADUATE,
SOME-COLLEGE, etc.]—where an ordering on the values is understood. However, the
theory presented below ignores such orderings by assuming that the only catagory la-
bels matter. Similarly, the theory assumes that the order of the attributes that describe
each case is arbitrary, so the results would be the same regardless of the order given. In
other words, a data base is regarded as identical if the columns, such as in Fig. 1, are
interchanged. When the attributes are particular wavelength intensities in the spectrum
of an object, for example, this assumption is clearly ignoring important information.

If the data collector is not sure that the current catagories will cover all future
values, a value “OTHER” can be added to allow for this possibility. However, the user
must supply some prior probability that OTHER will occur or the system will give this
probability a global default value. If the data base has missing data (indicated by *),
this is treated as another possible value of the given attribute, which also must be given
a suitable prior probability. The possible values of the "Sex” attribute, for example, are
then: [Male, Female, *}. o
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Cases ' Blood Group | Sex Human
Zaphrod Beeblebrox | O- M ?
Peter Cheeseman A+ M . Y
David Letterman & AB+ M . Y
Mickey Mouse I * M N
Minnie Mouse I * F N

Figure 1: Patient Data Base

3 Basic Bayesian Theory

We use Bayes’s theorem to find the probability of each classification hypothesis Hy
given all the data (cases) D. A classification hypothesis H; is the hypothesis that there
are exactly J classes, and is given by Bayes’s theorem:

P(H; | D)=c P(H;)P(D | Hy) _ (1)

where ¢ is the normalizing constant (defined by the requirement that 2;!:, P(H; | D) =
1); and P(H;) is the prior probability that there are J classes. In the absence of any
prior knowledge about the expected number of classes, we set all P(H;) priors equal,
and so this term is absorbed into the normalizing constant c. If the user has some prior
knowledge about the expected number of classes, this information can be inserted by
choosing the appropriate non-equal priors P(H;). For example, the user might have
prior knowledge that there are almost certainly classes present, so P(H),) is given very
low weight. Existing programs that find classes in random data are essentially putting
strong prior weight on the existence of classes, and so find classes in the noise. In
Eqn. 1, D is the entire set of cases in the data base, as described in section 2. The only
remaining undetermined term is the likelihood function P(D | H;). By definition, we
have ’

P(D|H;) = /f P(D,tj,i,-g | Hy) dl’jdi,-g (2)
= /f P(D | %8, Hy) P(x;,8;2 | HJ) dr;dfj

where x; and §;;, are vectors of all the parameters that define the classification model,
as defined below. In Eqn. 3, we integrate out (i.e. marginalize) the parameters that
define the classes to get the simpler term P(D | H,) that is not a function of the class
parameters. If the likelihood P(D | x;,0;x, Hs) (still a function of the class description
parameters) is used instead of P(D | Hy), as is usually done in maximum likelihood
methods, it is not possible to make meaningful comparisons between hypotheses with
different numbers of parameters. Maximum likelihood methods always ? favor hypothe-
ses with more parameters because they give more degrees of freedom to fit the likelihood

3Unless the number of pmcun exceeds the amount of data.
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to the data. In the case of classification, the “best” maximum likelihood fit occurs when
there are as many classes as there are cases, and the class parameters match the case
values exactly. The problem of overfitting when using maximum likelihood methods is
well known, but the Bayesian solution to the problem is not, even though the Bayesian
solution has been in the literature for nearly 50 years [8].

3.1 The Likelihood Function

The likelihood function, P(D | x;,6 ,g, Hy), is » measure of how likely the given data is
to have come from the given class hypothesis H;, defined by the parameters {x;,0 ,g}
As an example, let us suppose our database consists of measurements of apples taken
from an orchard. We have I apples and have measured K attributes of each (diameter,
density, color, sugar content, etc.). The Bayesian classification method will produce a
set of class descriptions based on these observed attributes that might correspond to J
different varieties (Golden Delicious, Granny Smith, Pippin, etc.).

We use the following notation:
i object number (1 to I)

J = class number (1 to J)

k = attribute number (1 to K)

Z;y = measured value of the kth attribute (diameter, density, etc.) of the
ith apple 7

= vector of attributes of sth apple

{z.} = the set of attribute vectors of all I apples (= D)

O,; = vector of parameters which describe the probability distribution of
the kth attribute of the jth class

x5 = class § probability—relative abundance of class j, e.g., the fraction

of the sample of apples that are Granny Smiths

The likelihood represents the probability that the apples in our sample came from
an orchard with a specified proportxon of classes of apples (x;), with each class defined

by attribute value probabilities (0,;) To expand the likelihood further, we make the
following assumptions. First, we assume the cases (examples, samples etc.) are indepen-
dent, that is, the probability of getting our particular sampling of apples is equal to the
product of the probabilities of getting each apple individually. This data independence
assumption is equivalent to:

I
p({i'.'}lf,',’jk.ﬂ.r) = [I»(E |56, Hs)
i=1

Next, we assume the classes are mutually exclusive and exhaustive, so the probability of

a single apple growing in our hypothetical orchard is equal to the sum of the probabilities
that it came from each variety, weighted by the proportion of that variety in the orchard,
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J
p(Z | x,05, Hy) = Y x;p(Zi €class 5| 82, HJ)-
—~

Finally, we assume all the attributes are (conditionally) independent within each class—
i.e., given that an apple belongs to a particular class, the attributes within that class are
independent of each other. This would not be the case if our measurements included
both diameter and weight, since these quantities would show a strong correlation in
every class. Under this assumption, we have:

K
p(f,' € class J ‘ 0,';, HJ) = II p(z,'g l z; € class j, 0,},3}).
k=1
The probability of getting a particular attribute value z;for a particular class jisa
function of the definition of the class (as specified by the class parameters 6;:) and the
value (z;;), i.e.,

p(zie | i € class 5, 81, H)) = f(Bir,zit)s

where we have assumed that the class parameters are independent of the number of
classes (H;). For example, the probability of a Granny Smith having a particular
diameter is part of the definition of what constitutes a Granny Smith apple, and we
must decide what sort of diameter distribution is appropriate for Granny Smiths. For
real-valued variables, we will use a Gaussian probability distribution:

2
- . = 1 1 { zax — Bsk.
; .€class 7, 05, Hs) s exp |—= | — Az;
p(zi | & 3, 65x, Hi) Toaom p[ 2( o )] Zik

where Az;; is the error in measuring Zix. In this equation, we are assuming that the
measurement error is much less than the class standard deviation (i.e. Az € o). I
this assumption holds, then the integral of the Gaussian curve for z;; over the range
Az;, is closely approximated by the value of the Gaussian at z;multiplied by its width
Az, as given by the equation above. In choosing this equation to model our classes, we
are describing the classes by two parameters, 4 and o, that together define the vector

i,’g.

G = | Pi*

* [ ojh }
This choice of a class model function may not be the best choice if, for instance, the
harvesters have discarded apples whose diameters fall below a certain value. If this
were the case, the correct probability distribution would be a truncated Gaussian. The

Bayesian method is flexible with regard to the functions used to model the classes.
Theoretically, any smooth, pormalizable function can be used.
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For catagory-valued attributes, such as apple color, we have
Pz | Z e class 5, 8,4, H;) = Piki; where z;; = ;.

That is, for the discrete attribute k, the Vprobability of the z;;th value being in the
category 3 is given by p;y. The set of probabilities Pju are the class parameters 6;,in
the discrete case.

Putting the above components together, the full likelihood function is

r J K
p({z} | 50, Hs) = T 3w [] plzas | 5 € class 5, 62, H,).

i=1 §=1 k=1

This product can be expanded to give:

P ({5.'} | "jaijhEJ) =
doapiap o x 3 p({Zidn, 15 = Dp({Zi}n, | 5= 2)---p({Z:},, 15=T)

where {n;} represents a partition of all J cases into J classes with n; cases in each
class, and the summation is over all possible partitions of cases into classes. The terms
in this sum are products of the probabilities of a particular partition of cases into
classes, weighted by the product of powers of the class probabilities x;. Note that
B1+n3+---+ny =l In general, this is sum has a very large number of terms.

3.2 Integration

The likelihood p({Z;} | x;,8;4, H;), gives the probability of the data {Z;}as a function
of the class descriptions {x;, 3,;} Using 1 above and suitable class priors p(Hs), we can
then calculate p(H | {Z;}). By calculating this posterior for different values of J , we
can then find the value of J that gives the most probable posterior value. That is, we
can search for the class hypothesis H; that gives the *best® number of classes. In order
to be able to compare these posterior probabilities for different numbers of classes, we
must integrate out the class parameters, as indicated in Eqn. 77. In more detail, we
have:

p({Z} | H)) = / / p({i‘j}l?,';’n,HJ)P('MjkIHJ)J*:'“:'I: 3
= / / p({Z:} | x5,0)p(x;, 0,4 )dx;db,,

In the last step, we are assuming that the class parameters x; and 5,1, are independent
of the number of classes J. Equation 4 is a multi-dimensional intergral over the full
set of parameters. Note that Equation 777 already gives us the likelihood term, but
the prior probabilities on the parameters P(x;,8;2) require further explanation. These
prior probability distributions represent the user’s knowledge of the possible values
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of the parameters defore the actual data is seen. Typically the prior probabilites on
parameters are represented by an approximate range on the data.

This integral can be done in closed form for the real-valued and discrete valued cases.
The intergal of the sum (Eqn. 3), becomes a sum of integrals; each integral having a
closed form solution. These integrals are given explicitly in a companion paper due to
lack of space. The result of this integration is a closed form solution to the probability of
the data, {Z;}, for each possible number of classes J. The problem is to find J with the
maximum posterior probability. Unfortunately, for a large number of data points and
many classes, the number of terms in the closed form solution is too large to evaluate
exhaustively, so Monto Carlo sampling methods are being investigated to approximate

this sum.

4 Assumptions

The assumptions (or limitations) built into the method described above are:

4.1 Assumptions

1. That classification is an appropriate model of the data. This is not true for
temporal (non-static) data, for example.

2. That all attributes are useful in distinguishing classes—the extension to allowing
every attribute to be either relevant or irrelevant to a particular class is discussed
in the next section.

3. That all classes are independent of each other—this implies that knowledge of
the probabilities of particular attributes in one class give no information about
the underlying probabilities in any other class. One method of removing this
assumption is to introduce hierarchical classes, discussed below.

4. Classifying all cases into a set of mutually exclusive and exhaustive classes is
appropriate. Independent classifications, discussed below, provide an alternative.

5. That the attributes within a class are independent—i.e. the attributes are con-

ditionally independent; conditioned on belonging to the given class. This is not

- correct when attributes such as Height, Weight, Length etc., are used, since they

are all dependent on a common “shape” factor. It is possible to correct for such

dependencies by using suitable joint probabilities, but these correction factors are
not discussed here.

6. That all the data can be cast in the form of properties of individual cases—i.e.,
no relations between cases are permitted (see section 2).

7. That all class hypotheses (including ones with different numbers of classes) are
equally likely a priori.
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4.2 Relaxation of Assumptions

The Bayesian method does not care which mode! is used. By building different likelihood
functions, the user can put in whatever model desired. However, in general, the more
complex the model (i.e., the more adjustable parameters it contains), more data is
needed to justify the additional complexity. We bave considered the following models
that relax some of the above assumptions.

4.2.1 Attribute Relevancy

The basic method presented above assumes that all the attributes are informative in
deciding class membership. If most of the attributes are uninformative for a particular
class, then the cost of estimating these parameters separately degrades the ability for
the method to discover finer classes. This is because of the fundamental link between
the number of parameters in a model relative to the amount of data. This restriction
can be removed by specifying for each class which attributes are relevant to that class
description. Those attributes that are relevant have their own class parameters to be
estimated. Those attributes that are judged irrelevant to a particular class description
are calculated using a single set of parameters that are shared across the corresponding
classes. We note that different application domain differ considerably in the relevancy
of the attribute. In the spectral classification experiments, the assumption that all
attributes (spectral values) are relevant is justified, but for medical data bases we have
investigated, where there are many very different attributes, most of which are not
relevant to a particular class description.

4.2.2 Hierarchical Classes

The assumption that all classes are independent of each other (as well as being mutually
exclusive and exhaustive) may not be correct in many applications. The independence
assumption implies that knowledge of the probability distribution for attribute values
in one class is non-informative about the corresponding distribution in another class.
This assumption can be relaxed by introducing hierarchical classes, where classes closer
together on the (hierarchical) tree are closer to each other. It is a simple matter to
build classes hierarchically; the method is to form classes directly, then extract these
class descriptions as data and recursively look for classes within the classes, and so on.
Unless there is & huge amount of data, this process rarely goes beyond two levels. It
is also possible to do hierarchical class splitting. The method is to first find the set
of cases whose probability of belonging to the class to be split is suficiently high (e.g.
95%). The classification procedure is then applied to this subset of cases, using prior
probabilities appropriate to this subset. The results when applied to the IRAS classes
have revealed very interesting fine structure.

4.2.3 Independent Classifications

Perhaps the strongest assumption is that a classification is appropriate at all! That is,
there are many situations where the assumption of mutually exclusive and exhaustive
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classes is not appropriate. HIV infected patients are either [Non-symptomatic, Pre-
AIDS, ARC or AIDS|—i.e., such patients must be one or other of these alternatives.
On the other hand, diseases are not mutually exclusive, so it is possible for a patient
to both have typhoid and cholera simultaneously. Given this situation, it is desirable
to develop a classification model that allows multiple overlapping classifications. This
means that a given case has a simultaneous probability distribution over each classi-
fication, and so can belong to more than one class, if the classes belong to different
classifications. It is possible for a single case to have both AIDS and cholera. About
the simplest model for multiple classifications is to assume that the classifications are
completely independent of each other. This means that knowledge of the probability
distribution in one classification says nothing about the distribution in another. The
resulting likelihood of the sth value of the A attribute, given that it belongs to the jth
class in the C classification and to the kth class in the D classification is:

(A1 Cy, D) = PAL G D) @

where n is the number of classifications, and p(A; | C;) is the probability of the sth
attribute value given that the case is in the jth class under the Cth classification (and
similarly for the Dth classification). The terms such as p(A; | C;) are calculated as
previously described in section 3.

4.2.4 Extended Models

The Bayesian criterion for finding the best classification model (and its various exten-
sions discussed in this section) is of much greater generality. The derivation in section
3 has been specialized to classification, but other models are possible. For a descrip-
tion of applications of the Bayesian criterion to domains such as learning of grammars,
finite state machines, line finding etc. see [7]. A natural extension of the automatic
classification approach is to include time dependent data bases—i.e. trend analysis.
This extension will require models of how systems evolve with time and priors on these
poesible models. Temporal models, such as Markov models and parameterized temporal
models (e.g. Fourier, exponential decay etc.), are being investigated.

5 . Prediction

Al and statistical pattern recognition literature often obscures the reason for finding
good classifications. The classification work reported here was originally motivated by
the desire to make (probabilistic) predictions directly from data. A previous approach
[4],[5], based on maximum entropy, allowed the direct calculation of the (conditional)
probability of any attribute value given any combination of other attribute values (i.e.
given particular evidence). The domain information in the previous approach consisted
of a set of joint or conditional probabilities (constraints) that summarized all the sig-
pificant information about intervariable correlations in the domain. These significant
constraints were found by comparing the ezpected probabilities of attribute value com-
binations with the observed values in a data base. Unfortunately, the cost of computing

233



Al RESEARCH BRANCH TECHNICAL REPORT LIST
NASA AMES RESEARCH CENTER o MARCH 1992

RIA-87-11-16-6

Automatic Bayesian Induction of Classes

PETER CHEESEMAN, JAMEs KELLY, MATTHEW SELF, AND JOHN StuTzZ November 1987

This paper describes a criterion, based on Bayes’ theorem, that defines the optimal set of classes (a
classification) for a given set of examples. This criterion does not require that the number of classes
be specified in advance; this is determined by the data. Tutored learning and probabilistic prediction
in particular cases are an important indirect result of optimal class discovery. Extensions to the basic
class induction program include the ability to combine category and real-valued data, hierarchical classes,
independent classiﬁcation;\and deciding for each class which attributes are relevant.

RIA-88-02-01-01

ions of Artificial Intelligence to Advanced Space Info ion Systems

February 1988

Knowledge Servers — Applica
PETER FRIEDLAND

sive information systems which act oufly to facilitate the storage and
re active and responsive systems which can deal with widely differing
igenbaum has coined the terpt ’knowledge servers’ to describe this
next generation of active information agement systems. Ampfig the functions of a knowledge server
will be: the ability to store enormous vagieties of knowledge; Ahe ability to determine, through natural
discourse, the needs of its users; the ability t& summarize and pfirsue complex relationships in its knowledge;
the ability to test and critique user hypothes and suggepf previously unseen connections resulting from
those hypotheses; and the ability to communicat and col}dborate with other autonomous knowledge servers.
Because of complexity and variety of information Y¢leyant to future major space missions like space station,

these missions will act as a driving force and testbe§for the knowledge server concept.

We have begun a transition from
retrieval of stereotyped data to far
forms of human knowledge. Edward

RIA-88-04-01-4

AutoClass: A Bayesian Classification Syst

PETER CHEESEMAN, JAMEsS KELLY,
FREEMAN

OHN STuTz, WILLIAM TAYLOR, AND DoN
April 1988

This paper describes AutoClass H, a program for automaticA]ly discovering (inducing) classes from a
database, based on a Bayesian ftatistical technique which automatically determines the most probable
number of classes, their probab'ﬁstic descriptions, and the probability that each object is a member of each
class. AutoClass has been tesjed on several large, real databases an has discovered previously unsuspected
classes. There is no doubt ylét these classes represent new phenomeny.

RIA-88-04-12-0

Learning by Making Models

PHILIP LAIRD

We propose a th¢ory of learning from unclassified data. The learning problem is that of finding the parameters
of a stochastic ‘process that best describes the incoming data stream. Specral attention is given to the
efficiency of the learning process, similar to Valiant’s theory of supervised leajping, and in contrast to
conventiona] pattern recognition approaches. Mlustrative domains are constructed §nd analyzed.

\\ April 1988







REPORT DOCUMENTATION PAGE

S e e

OMB No. 0704-0188

Pubhic reporting burden for this collection of information is estimated to average 1 hour per response, including the time fof reviewing instructions, searching existing data sources,

Jatpering 3nd maintaining the data needed, and compieting and reviewing the collection of information. Send comments re
Zallecuon of infarmation, including suggestions for reducing this burden 1o Nashington Headquarters Services, Directorate

arding this burden estimate or any other aspect of s
or information Operations and Reports, 1215 Jeffersun

Davis Highway, Suite 1204, Arlington, VA 22202-4302. and 1o the Office of Management and 8udget, Paperwork Reduction Project {0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) % REPORT DATE 3. REPORT TYPE AND DATES COVERED

ates attached

4. TITLE AND SUBTITLE

Titles/Authors - Attached

6. AUTHOR(S)

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Code FIA - Artificial Intelligence Research Branch

Information Sciences Division

8. PERFORMING ORGANIZATION
REPORT NUMBER

Attached

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Nasa/Ames Research Center

Moffett Field, CA. 94035-1000

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Available for Public Distribution

/17,{ FMM 5/ //¢2_ BRANCH CHIEF

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Abstracts ATTACHED

14. SUBJECT TERMS

15. NUMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION [ 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION {20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102 .






